欢迎来到易高考!永久域名:yigaokao.com
当前位置: 首页 >直线圆位置关系知识点

直线圆位置关系知识点

2025-06-05
直线圆位置关系知识点

篇1:直线圆位置关系知识点

点击下载:

高一下册数学第四单元知识点.doc

 

篇2:直线圆位置关系知识点

  直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行

  ①直线在平面内——有无数个公共点

  ②直线和平面相交——有且只有一个公共点

  直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

  esp.空间向量法(找平面的法向量)

  规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角

  由此得直线和平面所成角的取值范围为[0°,90°]

  最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角

  三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直

  esp.直线和平面垂直

  直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。

  直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

  直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

  ③直线和平面平行——没有公共点

  直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

  直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

  直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

篇3:直线圆位置关系知识点

篇3:直线圆位置关系知识点

空间两直线的位置关系:

  空间两条直线只有三种位置关系:平行、相交、异面

  1、按是否共面可分为两类:

  (1)共面:平行、相交

  (2)异面:

  异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

  异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

  两异面直线所成的角:范围为(0°,90°)esp.空间向量法

  两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法

  2、若从有无公共点的角度看可分为两类:

  (1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面

篇4:直线圆位置关系知识点

篇4:直线圆位置关系知识点

  1.平面

  (1)平面概念的理解

  直观的理解:桌面、黑板面、平静的水面等等都给人以平面的直观的印象,但它们都不是平面,而仅仅是平面的一部分。

  抽象的理解:平面是平的,平面是无限延展的,平面没有厚薄。

  (2)平面的表示法

  ①图形表示法:通常用平行四边形来表示平面,有时根据实际需要,也用其他的平面图形来表示平面。

  ②字母表示:常用等希腊字母表示平面。

  (3)涉及本部分内容的符号表示有:

  ①点A在直线l内,记作;

  ②点A不在直线l内,记作;

  ③点A在平面内,记作;

  ④点A不在平面内,记作;

  ⑤直线l在平面内,记作;

  ⑥直线l不在平面内,记作;

  注意:符号的使用与集合中这四个符号的使用的区别与联系。

  (4)平面的基本性质

  公理1:如果一条直线的两个点在一个平面内,那么这条直线上的所有点都在这个平面内。

  符号表示为:.

  注意:如果直线上所有的点都在一个平面内,我们也说这条直线在这个平面内,或者称平面经过这条直线。

  公理2:过不在一条直线上的三点,有且只有一个平面。

  符号表示为:直线AB存在的平面,使得。

  注意:“有且只有”的含义是:“有”表示存在,“只有”表示,不能用“只有”来代替.此公理又可表示为:不共线的三点确定一个平面。

  公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

  注意:两个平面有一条公共直线,我们说这两个平面相交,这条公共直线就叫作两个平面的交线.若平面、平面相交于直线l,记作。

  公理的推论:

  推论1:经过一条直线和直线外的一点有且只有一个平面。

  推论2:经过两条相交直线有且只有一个平面。

  推论3:经过两条平行直线有且只有一个平面。

  2.空间直线

  (1)空间两条直线的位置关系

  ①相交直线:有且仅有一个公共点,可表示为;

  ②平行直线:在同一个平面内,没有公共点,可表示为a//b;

  ③异面直线:不同在任何一个平面内,没有公共点。

  (2)平行直线

  公理4:平行于同一条直线的两条直线互相平行。

  符号表示为:设a、b、c是三条直线。

  定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

  (3)两条异面直线所成的角

  注意:①两条异面直线a,b所成的角的范围是(0°,90°]。

  ②两条异面直线所成的角与点O的选择位置无关,这可由前面所讲过的“等角定理”直接得出。

  ③由两条异面直线所成的角的定义可得出异面直线所成角的一般方法:

  (i)在空间任取一点,这个点通常是线段的中点或端点。

  (ii)分别作两条异面直线的平行线,这个过程通常采用平移的方法来实现。

  (iii)指出哪一个角为两条异面直线所成的角,这时我们要注意两条异面直线所成的角的范围。

  3.空间直线与平面

  直线与平面位置关系有且只有三种:

  (1)直线在平面内:有无数个公共点;

  (2)直线与平面相交:有且只有一个公共点;

  (3)直线与平面平行:没有公共点。

  4.平面与平面

  两个平面之间的位置关系有且只有以下两种:

  (1)两个平面平行:没有公共点;

  (2)两个平面相交:有一条公共直线。

  练习题:

  1.在下列命题中,不是公理的是()

  A.平行于同一个平面的两个平面相互平行

  B.过不在同一条直线上的三点,有且只有一个平面

  C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内

  D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

  解析:B、C、D都是公理,只有A不是.

  答案:A

  2.设P表示一个点,a、b表示两条直线,α、β表示两个平面,给出下列四个命题,其中正确的命题是()

  ①P∈a,P∈αaα

  ②a∩b=P,bβαβ

  ③a∥b,aα,P∈b,P∈αbα

  ④α∩β=b,P∈α,P∈βP∈b

  A.①②

  B.②③

  C.①④D.③④

  解析:当a∩α=P时,P∈a,P∈α,但aα,∴①错;a∩β=P时,②错;

  ∵a∥b,P∈b,∴Pa,

  ∴由直线a与点P确定平面α,

  又a∥b,由a与b确定平面β,但β经过直线a与点P,∴β与α重合,∴bα,故③正确;

  两个平面的公共点必在其交线上,故④正确.

  答案:D