欢迎来到易高考!永久域名:yigaokao.com
当前位置: 首页 >高二数学上学期知识点

高二数学上学期知识点

2025-07-21
高二数学上学期知识点

篇1:高二数学上学期知识点

1.高二数学上学期知识点归纳 篇一

  总体和样本

  ①在统计学中,把研究对象的全体叫做总体。

  ②把每个研究对象叫做个体。

  ③把总体中个体的总数叫做总体容量。

  ④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,_研究,我们称它为样本.其中个体的个数称为样本容量。

  简单随机抽样

  也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随。

  机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础,高三。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

  简单随机抽样常用的方法

  ①抽签法

  ②随机数表法

  ③计算机模拟法

  ④使用统计软件直接抽取。

  在简单随机抽样的样本容量设计中,主要考虑:

  ①总体变异情况;

  ②允许误差范围;

  ③概率保证程度。

  抽签法

  ①给调查对象群体中的每一个对象编号;

  ②准备抽签的工具,实施抽签;

  ③对样本中的每一个个体进行测量或调查。

2.高二数学上学期知识点归纳 篇二

  函数的奇偶性

  (1)若f(x)是偶函数,那么f(x)=f(-x);

  (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

  (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

3.高二数学上学期知识点归纳 篇三

  立体几何初步

  (1)棱柱:

  定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

  表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

  (2)棱锥

  定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

  分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

  表示:用各顶点字母,如五棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

  (3)棱台:

  定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

  分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

  表示:用各顶点字母,如五棱台

  几何特征:

  ①上下底面是相似的平行多边形

  ②侧面是梯形

  ③侧棱交于原棱锥的顶点

  (4)圆柱:

  定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

  几何特征:

  ①底面是全等的圆;

  ②母线与轴平行;

  ③轴与底面圆的半径垂直;

  ④侧面展开图是一个矩形。

  (5)圆锥:

  定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

  几何特征:

  ①底面是一个圆;

  ②母线交于圆锥的顶点;

  ③侧面展开图是一个扇形。

  (6)圆台:

  定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

  几何特征:

  ①上下底面是两个圆;

  ②侧面母线交于原圆锥的顶点;

  ③侧面展开图是一个弓形。

  (7)球体:

  定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:

  ①球的截面是圆;

  ②球面上任意一点到球心的距离等于半径。

4.高二数学上学期知识点归纳 篇四

  (1)总体和样本

  ①在统计学中,把研究对象的全体叫做总体.

  ②把每个研究对象叫做个体.

  ③把总体中个体的总数叫做总体容量.

  ④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,研究,我们称它为样本.其中个体的个数称为样本容量.

  (2)简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随

  机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

  (3)简单随机抽样常用的方法:

  ①抽签法

  ②随机数表法

  ③计算机模拟法

  在简单随机抽样的样本容量设计中,主要考虑:

  ①总体变异情况;

  ②允许误差范围;

  ③概率保证程度。

  (4)抽签法:

  ①给调查对象群体中的每一个对象编号;

  ②准备抽签的工具,实施抽签;

  ③对样本中的每一个个体进行测量或调查

5.高二数学上学期知识点归纳 篇五

  空间中的平行问题

  (1)直线与平面平行的判定及其性质

  线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

  线线平行线面平行

  线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行线线平行。

  (2)平面与平面平行的.判定及其性质

  两个平面平行的判定定理

  (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。(线面平行→面面平行)

  (2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。(线线平行→面面平行)

  (3)垂直于同一条直线的两个平面平行。

  两个平面平行的性质定理

  (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)

  (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)

篇2:高二数学上学期知识点

1.高二数学上学期知识点笔记 篇一

  1.万能公式

  令tan(a/2)=t

  sina=2t/(1+t^2)

  cosa=(1-t^2)/(1+t^2)

  tana=2t/(1-t^2)

  2.辅助角公式

  asint+bcost=(a^2+b^2)^(1/2)sin(t+r)

  cosr=a/[(a^2+b^2)^(1/2)]

  sinr=b/[(a^2+b^2)^(1/2)]

  tanr=b/a

  3.三倍角公式

  sin(3a)=3sina-4(sina)^3

  cos(3a)=4(cosa)^3-3cosa

  tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]

  4.积化和差

  sina*cosb=[sin(a+b)+sin(a-b)]/2

  cosa*sinb=[sin(a+b)-sin(a-b)]/2

  cosa*cosb=[cos(a+b)+cos(a-b)]/2

  sina*sinb=-[cos(a+b)-cos(a-b)]/2

  5.积化和差

  sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]

  sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]

  cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]

  cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

2.高二数学上学期知识点笔记 篇二

  不等式的证明

  (1)不等式证明的依据

  (2)不等式的性质

  (3)重要不等式:

  ①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

  ②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)

  不等式的证明方法

  (1)比较法:要证明a>b(a0(a-b<0),这种证明不等式的方法叫做比较法.

  用比较法证明不等式的步骤是:作差——变形——判断符号.

  (2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.

  (3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.

  证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.

3.高二数学上学期知识点笔记 篇三

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

  余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角

  圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

  圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

  抛物线标准方程y2=2pxy2=-2p2=2pyx2=-2py

  直棱柱侧面积S=ch斜棱柱侧面积S=c'h

  正棱锥侧面积S=1/2ch'正棱台侧面积S=1/2(c+c')h'

  圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pir2

  圆柱侧面积S=ch=2pih圆锥侧面积S=1/2cl=pirl

  弧长公式l=ara是圆心角的弧度数r>0扇形面积公式s=1/2lr

  锥体体积公式V=1/3SH圆锥体体积公式V=1/3pir2h

  斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

  柱体体积公式V=sh圆柱体V=pr2h

4.高二数学上学期知识点笔记 篇四

  空间中的垂直问题

  (1)线线、面面、线面垂直的定义

  ①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

  ②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

  ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

  (2)垂直关系的判定和性质定理

  ①线面垂直判定定理和性质定理

  判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

  性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

  ②面面垂直的判定定理和性质定理

  判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

  性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

5.高二数学上学期知识点笔记 篇五

  1、几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

  2、几何概型的概率公式:P(A)=构成事件A的区域长度(面积或体积);

  试验的全部结果所构成的区域长度(面积或体积)

  3、几何概型的特点:

  1)试验中所有可能出现的结果(基本事件)有无限多个;

  2)每个基本事件出现的可能性相等、

  4、几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。

篇3:高二数学上学期知识点

1.高二文科数学上学期知识点 篇一

  系统抽样

  1.系统抽样(等距抽样或机械抽样):

  把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。

  K(抽样距离)=N(总体规模)/n(样本规模)

  前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。

  2.系统抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简单。更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。

2.高二文科数学上学期知识点 篇二

  空间几何体表面积体积公式:

  1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

  2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

  3、a-边长,S=6a2,V=a3

  4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc

  5、棱柱S-h-高V=Sh

  6、棱锥S-h-高V=Sh/3

  7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6

  9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)

  11、r-底半径h-高V=πr^2h/3

  12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/6

  14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3

  15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6

  16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4

  17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

3.高二文科数学上学期知识点 篇三

  1.定义:

  用符号〉,=,〈号连接的式子叫不等式。

  2.性质:

  ①不等式的两边都加上或减去同一个整式,不等号方向不变。

  ②不等式的两边都乘以或者除以一个正数,不等号方向不变。

  ③不等式的两边都乘以或除以同一个负数,不等号方向相反。

  3.分类:

  ①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

  ②一元一次不等式组:

  a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

  b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

  4.考点:

  ①解一元一次不等式(组)

  ②根据具体问题中的数量关系列不等式(组)并解决简单实际问题

  ③用数轴表示一元一次不等式(组)的解集

4.高二文科数学上学期知识点 篇四

  等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。

  面积公式

  若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:

  S=ab/2。

  且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为:

  S=ch/2=c2/4。

  等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹一直角锐角45°,斜边上中线角平分线垂线三线合一。

5.高二文科数学上学期知识点 篇五

  图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。

  常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)

  平移变换y=f(x)→y=f(x+a),y=f(x)+b

  注意:

  (ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。

  (ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。

  对称变换y=f(x)→y=f(-x),关于y轴对称

  y=f(x)→y=-f(x),关于x轴对称

  y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称

  y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)

  伸缩变换:y=f(x)→y=f(ωx),

  y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。

  一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称

篇4:高二数学上学期知识点

1.高二数学上学期知识点整理

  空间直线与直线之间的位置关系

  (1)异面直线定义:不同在任何一个平面内的两条直线

  (2)异面直线性质:既不平行,又不相交.

  (3)异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

  异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.

  (4)求异面直线所成角步骤:

  A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.

  B、证明作出的角即为所求角C、利用三角形来求角

  (5)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.

  (6)空间直线与平面之间的位置关系

  直线在平面内——有无数个公共点.

  三种位置关系的符号表示:aαa∩α=Aaα

  (7)平面与平面之间的位置关系:

  平行——没有公共点;αβ

  相交——有一条公共直线.α∩β=b

2.高二数学上学期知识点整理

  一、导数的应用

  1.用导数研究函数的最值

  确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

  2.生活中常见的函数优化问题

  1)费用、成本最省问题

  2)利润、收益问题

  3)面积、体积最(大)问题

  二、推理与证明

  1.归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,*的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,*的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

  2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

  三、不等式

  对于含有参数的一元二次不等式解的讨论

  1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

  2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

3.高二数学上学期知识点整理

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

  余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角

  圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

  圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

  抛物线标准方程y2=2pxy2=-2p2=2pyx2=-2py

  直棱柱侧面积S=ch斜棱柱侧面积S=c'h

  正棱锥侧面积S=1/2ch'正棱台侧面积S=1/2(c+c')h'

  圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pir2

  圆柱侧面积S=ch=2pih圆锥侧面积S=1/2cl=pirl

  弧长公式l=ara是圆心角的弧度数r>0扇形面积公式s=1/2lr

  锥体体积公式V=1/3SH圆锥体体积公式V=1/3pir2h

  斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

  柱体体积公式V=sh圆柱体V=pr2h

  乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

  根与系数的关系X1+X2=-b/aX1X2=c/a注:韦达定理

  判别式

  b2-4ac=0注:方程有两个相等的实根

  b2-4ac>0注:方程有两个不等的实根

  b2-4ac<0注:方程没有实根,有共轭复数根

4.高二数学上学期知识点整理

  极值的定义:

  (1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)

  (2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。

  极值的性质:

  (1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是或最小,并不意味着它在函数的整个的定义域内或最小;

  (2)函数的极值不是的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;

  (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;

  (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得值、最小值的点可能在区间的内部,也可能在区间的端点。

  求函数f(x)的极值的步骤:

  (1)确定函数的定义区间,求导数f′(x);

  (2)求方程f′(x)=0的根;

  (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。

5.高二数学上学期知识点整理

  分层抽样

  先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

  两种方法

  1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

  2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

  3.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

  分层标准

  (1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

  (2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

  (3)以那些有明显分层区分的变量作为分层变量。

  分层的比例问题

  (1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

  (2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

篇5:高二数学上学期知识点

1.高二数学上学期知识点总结

  判断函数零点个数的常用方法

  1、解方程法:

  令f(x)=0,如果能求出解,则有几个解就有几个零点。

  2、零点存在性定理法:

  利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。

  3、数形结合法:

  转化为两个函数的图象的交点个数问题。先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。

  已知函数有零点(方程有根)求参数取值常用的方法

  1、直接法:

  直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。

  2、分离参数法:

  先将参数分离,转化成求函数值域问题加以解决。

  3、数形结合法:

  先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。

2.高二数学上学期知识点总结

  1.两角和与差的正弦、余弦和正切公式:

  重点:通过探索和讨论交流,导出两角差与和的三角函数的十一个公式,并了解它们的内在联系。

  难点:两角差的余弦公式的探索和证明。

  2.简单的三角恒等变换:

  重点:掌握三角变换的内容、思路和方法,体会三角变换的特点。

  难点:公式的灵活应用。

  三角函数几点说明:

  1.对弧长公式只要求了解,会进行简单应用,不必在应用方面加深。

  2.用同角三角函数基本关系证明三角恒等式和求值计算,熟练配角和sin和cos的计算。

  3.已知三角函数值求角问题,达到课本要求即可,不必拓展。

  4.熟练掌握函数y=Asin(wx+j)图象、单调区间、对称轴、对称点、特殊点和值。

  5.积化和差、和差化积、半角公式只作为练习,不要求记忆。

  6.两角和与差的正弦、余弦和正切公式。

3.高二数学上学期知识点总结

  概率性质与公式

  (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);

  (2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);

  (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);

  (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果。

  贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。它是由果索因;

  如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式。

  (5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n。当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式。

4.高二数学上学期知识点总结

  分层抽样

  先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,后,将这些子样本合起来构成总体的样本。

  两种方法

  1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

  2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,后用系统抽样的方法抽取样本。

  3.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

  分层标准

  (1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

  (2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

  (3)以那些有明显分层区分的变量作为分层变量。

  分层的比例问题

  (1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

  (2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

5.高二数学上学期知识点总结

  1、几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

  2、几何概型的概率公式:P(A)=构成事件A的区域长度(面积或体积)

  试验的全部结果所构成的区域长度(面积或体积)

  3、几何概型的特点:

  1)试验中所有可能出现的结果(基本事件)有无限多个;

  2)每个基本事件出现的可能性相等、

  4、几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。

篇6:高二数学上学期知识点

1.高二年级数学上学期知识点

  1、向量的加法

  向量的加法满足平行四边形法则和三角形法则。

  AB+BC=AC。

  a+b=(x+x',y+y')。

  a+0=0+a=a。

  向量加法的运算律:

  交换律:a+b=b+a;

  结合律:(a+b)+c=a+(b+c)。

  2、向量的减法

  如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0

  AB-AC=CB.即“共同起点,指向被减”

  a=(x,y)b=(x',y')则a-b=(x-x',y-y').

  3、数乘向量

  实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。

  当λ>0时,λa与a同方向;

  当λ<0时,λa与a反方向;

  当λ=0时,λa=0,方向任意。

  当a=0时,对于任意实数λ,都有λa=0。

  注:按定义知,如果λa=0,那么λ=0或a=0。

  实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

  当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

  结合律:(λa)·b=λ(a·b)=(a·λb)。

  向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

  数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

  数乘向量的消去律:

  ①如果实数λ≠0且λa=λb,那么a=b。

  ②如果a≠0且λa=μa,那么λ=μ。

  4、向量的的数量积

  定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。

  定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。

  向量的数量积的坐标表示:a·b=x·x'+y·y'。

  向量的数量积的运算率

  a·b=b·a(交换率);

  (a+b)·c=a·c+b·c(分配率);

  向量的数量积的性质

  a·a=|a|的平方。

  a⊥b〈=〉a·b=0。

  |a·b|≤|a|·|b|。

2.高二年级数学上学期知识点

  (1)总体和样本:

  ①在统计学中,把研究对象的全体叫做总体.

  ②把每个研究对象叫做个体.

  ③把总体中个体的总数叫做总体容量.

  ④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,_研究,我们称它为样本.其中个体的个数称为样本容量.

  (2)简单随机抽样,也叫纯随机抽样。

  就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

  (3)简单随机抽样常用的方法:

  ①抽签法

  ②随机数表法

  ③计算机模拟法

  在简单随机抽样的样本容量设计中,主要考虑:

  ①总体变异情况;

  ②允许误差范围;

  ③概率保证程度。

  (4)抽签法:

  ①给调查对象群体中的每一个对象编号;

  ②准备抽签的工具,实施抽签;

  ③对样本中的每一个个体进行测量或调查

3.高二年级数学上学期知识点

  1、几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

  2、几何概型的概率公式:P(A)=构成事件A的区域长度(面积或体积);

  试验的全部结果所构成的区域长度(面积或体积)

  3、几何概型的特点:

  1)试验中所有可能出现的结果(基本事件)有无限多个;

  2)每个基本事件出现的可能性相等、

  4、几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。

  通过以上对于几何概型的基本知识点的梳理,我们不难看出其要核是:要抓住几何概型具有无限性和等可能性两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提。因此,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比例法”,即随机事件A的概率可以用“事件A包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示。

4.高二年级数学上学期知识点

  空间中的垂直问题

  (1)线线、面面、线面垂直的定义

  ①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

  ②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

  ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

  (2)垂直关系的判定和性质定理

  ①线面垂直判定定理和性质定理

  判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

  性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

  ②面面垂直的判定定理和性质定理

  判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

  性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

5.高二年级数学上学期知识点

  图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。

  常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)

  平移变换y=f(x)→y=f(x+a),y=f(x)+b

  注意:

  (ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。

  (ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。

  对称变换y=f(x)→y=f(-x),关于y轴对称

  y=f(x)→y=-f(x),关于x轴对称

  y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称

  y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)

  伸缩变换:y=f(x)→y=f(ωx),

  y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。

篇7:高二数学上学期知识点

1.高二年级数学上学期知识点梳理 篇一

  1.函数的奇偶性。

  (1)若f(x)是偶函数,那么f(x)=f(-x)。

  (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。

  (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0)。

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。

  2.复合函数的有关问题。

  (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的`定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

  (2)复合函数的单调性由“同增异减”判定。

  3.函数图像(或方程曲线的对称性)。

  (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上。

  (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然。

  (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。

  (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0。

  (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称。

  4.函数的周期性。

  (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数。

  (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2|a|的周期函数。

  (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4|a|的周期函数。

  (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数。

  5.判断对应是否为映射时,抓住两点。

  (1)A中元素必须都有象且。

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象。

  6.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

2.高二年级数学上学期知识点梳理 篇二

  数列的定义

  按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项

  (1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列

  (2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….

  (4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n

  (5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合

3.高二年级数学上学期知识点梳理 篇三

  导数是微积分中的重要基础概念。当函数=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δ与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

  导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

  不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

  对于可导的函数f(x),xf'(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

  设函数=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δ=f(x0+Δx)-f(x0);如果Δ与Δx之比当Δx→0时极限存在,则称函数=f(x)在点x0处可导,并称这个极限为函数=f(x)在点x0处的导数记为f'(x0),也记作'│x=x0或d/dx│x=x0

4.高二年级数学上学期知识点梳理 篇四

  判断函数零点个数的常用方法

  1、解方程法:

  令f(x)=0,如果能求出解,则有几个解就有几个零点。

  2、零点存在性定理法:

  利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。

  3、数形结合法:

  转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。

5.高二年级数学上学期知识点梳理 篇五

  分层抽样

  先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

  两种方法

  1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

  2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

  3.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

  分层标准

  (1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

  (2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

  (3)以那些有明显分层区分的变量作为分层变量。

  分层的比例问题

  (1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

  (2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

6.高二年级数学上学期知识点梳理 篇六

  1.抛物线是轴对称图形。对称轴为直线

  x=-b/2a。

  对称轴与抛物线的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为

  P(-b/2a,(4ac-b^2)/4a)

  当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

  Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

  Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

篇8:高二数学上学期知识点

1.高二年级数学上学期知识点整理

  极值的定义:

  (1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)

  (2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。

  极值的性质:

  (1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是或最小,并不意味着它在函数的整个的定义域内或最小;

  (2)函数的极值不是的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;

  (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;

  (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得值、最小值的点可能在区间的内部,也可能在区间的端点。

  求函数f(x)的极值的步骤:

  (1)确定函数的定义区间,求导数f′(x);

  (2)求方程f′(x)=0的根;

  (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。

2.高二年级数学上学期知识点整理

  (1)算法概念:

  在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.

  (2)算法的特点:

  ①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.

  ②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.

  ③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.

  ④不性:求解某一个问题的解法不一定是的,对于一个问题可以有不同的算法.

  ⑤普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.

3.高二年级数学上学期知识点整理

  1、科学记数法:把一个数字写成的形式的记数方法。

  2、统计图:形象地表示收集到的数据的图。

  3、扇形统计图:用圆和扇形来表示总体和部分的关系,扇形大小反映部分占总体的百分比的大小;在扇形统计图中,每个部分占总体的百分比等于该部分对应的扇形圆心角与360°的比。

  4、条形统计图:清楚地表示出每个项目的具体数目。

  5、折线统计图:清楚地反映事物的变化情况。

  6、确定事件包括:肯定会发生的必然事件和一定不会发生的不可能事件。

  7、不确定事件:可能发生也可能不发生的事件;不确定事件发生的可能性大小不同;不确定。

  8、事件的概率:可用事件结果除以所以可能结果求得理论概率。

  9、有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位为止的数字。

  10、游戏双方公平:双方获胜的可能性相同。

  11、算数平均数:简称“平均数”,最常用,受极端值得影响较大;加权平均数

  12、中位数:数据按大小排列,处于中间位置的数,计算简单,受极端值得影响较小。

  13、众数:一组数据中出现次数最多的数据,受极端值得影响较小,跟其他数据关系不大。

  14、平均数、众数、中位数都是数据的代表,刻画了一组数据的“平均水平”。

  15、普查:为了一定目的对考察对象进行全面调查;考察对象全体叫总体,每个考察对象叫个体。

  16、抽样调查:从总体中抽取部分个体进行调查;从总体中抽出的一部分个体叫样本(有代表性)。

  17、随机调查:按机会均等的原则进行调查,总体中每个个体被调查的概率相同。

  18、频数:每次对象出现的次数。

  19、频率:每次对象出现的次数与总次数的比值。

  20、级差:一组数据中数据与最小数据的差,刻画数据的离散程度。

  21、方差:各个数据与平均数之差的平方的平均数,刻画数据的离散程度。

  21、标准方差:方差的算数平方根刻画数据的离散程度。

  23、一组数据的级差、方差、标准方差越小,这组数据就越稳定。

  24、利用树状图或表格方便求出某事件发生的概率。

  25、两个对比图像中,坐标轴上同一单位长度表示的意义一致,纵坐标从0开始画。

4.高二年级数学上学期知识点整理

  积化和差公式:

  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

  cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

  sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

  和差化积公式:

  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

  平方关系:

  sin^2α+cos^2α=1

  1+tan^2α=sec^2α

  1+cot^2α=csc^2α

  积的关系:

  sinα=tanα×cosα

  cosα=cotα×sinα

  tanα=sinα×secα

  cotα=cosα×cscα

  secα=tanα×cscα

  cscα=secα×cotα

  倒数关系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的关系:

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

5.高二年级数学上学期知识点整理

  1、几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

  2、几何概型的概率公式:P(A)=构成事件A的区域长度(面积或体积);

  试验的全部结果所构成的区域长度(面积或体积)

  3、几何概型的特点:

  1)试验中所有可能出现的结果(基本事件)有无限多个;

  2)每个基本事件出现的可能性相等

  4、几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。

6.高二年级数学上学期知识点整理

  (1)总体和样本

  ①在统计学中,把研究对象的全体叫做总体.

  ②把每个研究对象叫做个体.

  ③把总体中个体的总数叫做总体容量.

  ④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,我们称它为样本.其中个体的个数称为样本容量.

  (2)简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随

  机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

  (3)简单随机抽样常用的方法:

  ①抽签法

  ②随机数表法

  ③计算机模拟法

  在简单随机抽样的样本容量设计中,主要考虑:

  ①总体变异情况;

  ②允许误差范围;

  ③概率保证程度。

  (4)抽签法:

  ①给调查对象群体中的每一个对象编号;

  ②准备抽签的工具,实施抽签;

  ③对样本中的每一个个体进行测量或调查

篇9:高二数学上学期知识点

1.高二年级数学上学期知识点总结

  1、几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

  2、几何概型的概率公式:P(A)=构成事件A的区域长度(面积或体积);试验的全部结果所构成的区域长度(面积或体积)

  3、几何概型的特点:

  1)试验中所有可能出现的结果(基本事件)有无限多个;

  2)每个基本事件出现的可能性相等、

  4、几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。

2.高二年级数学上学期知识点总结

  1.两角和与差的正弦、余弦和正切公式:

  重点:通过探索和讨论交流,导出两角差与和的三角函数的十一个公式,并了解它们的内在联系。

  难点:两角差的余弦公式的探索和证明。

  2.简单的三角恒等变换:

  重点:掌握三角变换的内容、思路和方法,体会三角变换的特点。

  难点:公式的灵活应用。

  三角函数几点说明:

  1.对弧长公式只要求了解,会进行简单应用,不必在应用方面加深。

  2.用同角三角函数基本关系证明三角恒等式和求值计算,熟练配角和sin和cos的计算。

  3.已知三角函数值求角问题,达到课本要求即可,不必拓展。

  4.熟练掌握函数y=Asin(wx+j)图象、单调区间、对称轴、对称点、特殊点和值。

  5.积化和差、和差化积、半角公式只作为练习,不要求记忆。

  6.两角和与差的正弦、余弦和正切公式。

3.高二年级数学上学期知识点总结

  一、随机事件

  (1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。

  (2)四种运算律:交换律、结合律、分配律、德莫根律。

  (3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。

  二、概率定义

  (1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;

  (2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;

  (3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;

  (4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。

  三、概率性质与公式

  (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);

  (2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);

  (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);

  (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果。

  贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。它是由果索因;

  如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式。

  (5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n。当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式。

4.高二年级数学上学期知识点总结

  一、导数的应用

  1、用导数研究函数的值

  确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。

  学习了如何用导数研究函数的值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

  2、生活中常见的函数优化问题

  1)费用、成本省问题

  2)利润、收益大问题

  3)面积、体积(大)问题

  二、推理与证明

  1、归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

  2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

  三、不等式

  对于含有参数的一元二次不等式解的讨论

  1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

  2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。

  通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求值的九种技巧这样的解题思路需要再做题的过程中总结出来。

  四、坐标平面上的直线

  1、内容要目:直线的点方向式方程、直线的点法向式方程、点斜式方程、直线方程的一般式、直线的倾斜角和斜率等。点到直线的距离,两直线的夹角以及两平行线之间的距离。

  2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。

  3、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地研究点与直线、直线与直线的位置关系。根据两个独立条件求出直线方程。熟练运用待定系数法。

  五、圆锥曲线

  1、内容要目:直角坐标系中,曲线C是方程F(x,y)=0的曲线及方程F(x,y)=0是曲线C的方程,圆的标准方程及圆的一般方程。椭圆、双曲线、抛物线的标准方程及它们的性质。

  2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线

  上及求曲线的交点。掌握圆、椭圆、双曲线、抛物线的定义和求这些曲线方程的基本方法。求曲线的交点之间的距离及交点的中点坐标。利用直线和圆、圆和圆的位置关系的几何判定,确定它们的位置关系并利用解析法解决相应的几何问题。

  3、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。

5.高二年级数学上学期知识点总结

  1.任意角

  (1)角的分类:

  ①按旋转方向不同分为正角、负角、零角。

  ②按终边位置不同分为象限角和轴线角。

  (2)终边相同的角:

  终边与角相同的角可写成+k360(kZ)。

  (3)弧度制:

  ①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角。

  ②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=,l是以角作为圆心角时所对圆弧的长,r为半径。

  ③用弧度做单位来度量角的制度叫做弧度制。比值与所取的r的大小无关,仅与角的大小有关。

  ④弧度与角度的换算:360弧度;180弧度。

  ⑤弧长公式:l=||r,扇形面积公式:S扇形=lr=||r2.

  2.任意角的三角函数

  (1)任意角的三角函数定义:

  设是一个任意角,角的终边与单位圆交于点P(x,y),那么角的正弦、余弦、正切分别是:sin=y,cos=x,tan=,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数。

  (2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦。

  3.三角函数线

  设角的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M。由三角函数的定义知,点P的坐标为(cos_,sin_),即P(cos_,sin_),其中cos=OM,sin=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与的终边或其反向延长线相交于点T,则tan=AT。我们把有向线段OM、MP、AT叫做的余弦线、正弦线、正切线。

篇10:高二数学上学期知识点

1.高二上学期数学知识点总结

  等腰直角三角形面积公式:

  S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。

  面积公式

  若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:

  S=ab/2。

  且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为:

  S=ch/2=c2/4。

  等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹一直角锐角45°,斜边上中线角平分线垂线三线合一。

  反正弦函数的导数:正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1],值域[-π/2,π/2]。

2.高二上学期数学知识点总结

  已知函数有零点(方程有根)求参数取值常用的方法

  1、直接法:

  直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。

  2、分离参数法:

  先将参数分离,转化成求函数值域问题加以解决。

  3、数形结合法:

  先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。

3.高二上学期数学知识点总结

  判断函数零点个数的常用方法

  1、解方程法:

  令f(x)=0,如果能求出解,则有几个解就有几个零点。

  2、零点存在性定理法:

  利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。

  3、数形结合法:

  转化为两个函数的图象的交点个数问题。先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。

4.高二上学期数学知识点总结

  1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法.

  2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数.

  3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.

  4.秦九韶算法是一种用于计算一元二次多项式的值的方法.

  5.常用的排序方法是直接插入排序和冒泡排序.

  6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k.

  7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.

  8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.

5.高二上学期数学知识点总结

  (1)总体和样本

  ①在统计学中,把研究对象的全体叫做总体.

  ②把每个研究对象叫做个体.

  ③把总体中个体的总数叫做总体容量.

  ④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,_研究,我们称它为样本。其中个体的个数称为样本容量。

  (2)简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

  (3)简单随机抽样常用的方法:

  ①抽签法

  ②随机数表法

  ③计算机模拟法

  在简单随机抽样的样本容量设计中,主要考虑:

  ①总体变异情况;

  ②允许误差范围;

  ③概率保证程度。

  (4)抽签法:

  ①给调查对象群体中的每一个对象编号;

  ②准备抽签的工具,实施抽签;

  ③对样本中的每一个个体进行测量或调查

6.高二上学期数学知识点总结

  导数的应用

  1.用导数研究函数的最值

  确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

  2.生活中常见的函数优化问题

  1)费用、成本最省问题

  2)利润、收益问题

  3)面积、体积最(大)问题

篇11:高二数学上学期知识点

1.高二年级上学期数学知识点

  一、随机事件

  主要掌握好(三四五)

  (1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。

  (2)四种运算律:交换律、结合律、分配律、德莫根律。

  (3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。

  二、概率定义

  (1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;

  (2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;

  (3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;

  (4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。

  三、概率性质与公式

  (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);

  (2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);

  (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);

  (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果。

  贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。它是由果索因;

  如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式。

  (5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n。当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式。

2.高二年级上学期数学知识点

  极值的定义:

  (1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)

  (2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。

  极值的性质:

  (1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是或最小,并不意味着它在函数的整个的定义域内或最小;

  (2)函数的极值不是的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;

  (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;

  (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得值、最小值的点可能在区间的内部,也可能在区间的端点。

  求函数f(x)的极值的步骤:

  (1)确定函数的定义区间,求导数f′(x);

  (2)求方程f′(x)=0的根;

  (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。

3.高二年级上学期数学知识点

  直线的倾斜角:

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

  直线的斜率:

  ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

  ②过两点的直线的斜率公式。

  注意:

  (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

  (2)k与P1、P2的顺序无关;

  (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

4.高二年级上学期数学知识点

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

  余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角

  圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

  圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

  抛物线标准方程y2=2pxy2=-2p2=2pyx2=-2py

  直棱柱侧面积S=ch斜棱柱侧面积S=c'h

  正棱锥侧面积S=1/2ch'正棱台侧面积S=1/2(c+c')h'

  圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pir2

  圆柱侧面积S=ch=2pih圆锥侧面积S=1/2cl=pirl

  弧长公式l=ara是圆心角的弧度数r>0扇形面积公式s=1/2lr

  锥体体积公式V=1/3SH圆锥体体积公式V=1/3pir2h

  斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

  柱体体积公式V=sh圆柱体V=pr2h

  乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

  根与系数的关系X1+X2=-b/aX1X2=c/a注:韦达定理

  判别式

  b2-4ac=0注:方程有两个相等的实根

  b2-4ac>0注:方程有两个不等的实根

  b2-4ac<0注:方程没有实根,有共轭复数根

5.高二年级上学期数学知识点

  1.抛物线是轴对称图形。对称轴为直线

  x=-b/2a

  对称轴与抛物线的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为

  P(-b/2a,(4ac-b^2)/4a)

  当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

  Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

  Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

篇12:高二数学上学期知识点

五、常用逻辑用语:

1、四种命题:

⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若 p则 q;⑷逆否命题:若 q则 p

注:1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。

2、注意命题的否定与否命题的区别:命题 否定形式是 ;否命题是 .命题“ 或 ”的否定是“ 且 ”;“ 且 ”的否定是“ 或 ”.

3、逻辑联结词:

⑴且(and) :命题形式 p q; p q p q p q p

⑵或(or):命题形式 p q; 真 真 真 真 假

⑶非(not):命题形式 p . 真 假 假 真 假

假 真 假 真 真

假 假 假 假 真

“或命题”的真假特点是“一真即真,要假全假”;

“且命题”的真假特点是“一假即假,要真全真”;

“非命题”的真假特点是“一真一假”

4、充要条件

由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。

5、全称命题与特称命题:

短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号 表示。含有全体量词的命题,叫做全称命题。

短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号 表示,含有存在量词的命题,叫做存在性命题。

全称命题p: ; 全称命题p的否定 p: 。

特称命题p: ; 特称命题p的否定 p: ;