高三数学二轮复习问题

篇1:高三数学二轮复习问题
目前全省各学校高三的复习基本上都已经进入二轮复习了,就当前高三学生在数学的复习中遇到的几个问题,我提几点复习意见,希望能给广大高三学子一点启发。
对于数学这一学科来讲,二轮复习是拿分数的关键时期。一轮复习重在打基础,拉网式的将知识点过一遍,力求做到不遗漏任何知识点。而二轮复习的作用在于提升、巩固、总结和得分,是最实际的一个阶段。
问题一:有的学生在第一轮复习中学得很辛苦,拿模拟试卷一考却不见分数,这是为什么?
在一轮复习中,复习重在基础知识的回顾,目的是让知识结构中不存在盲区。采用的复习方法是以课本为本。在一轮复习结束后,知识点在我们的意识形态中还是孤立的,没有通过知识点之间的内在关系联系在一起。另外,由于知识点多、杂,难以让我们的学生一下子记住和掌握,更不用说灵活地运用。而我们的模拟考试往往是接近于实战,重在考察学生知识点的全面性和知识点的关联性,以及基本的方法和基本技能。除此之外,有的学校还特意将一轮模拟考试的难度稍微提高一点,目的是让大家有紧迫感,因此,在一模考试中见不到分数是很正常的,分数的提高主要是在二轮复习中。
问题二:二轮复习的难度大于一轮复习,我基础不好,跟不上,该怎么办?
有很多基础差的学生在一轮复习中还勉强能跟上老师的节奏,而到了二轮复习中感觉很吃力,跟不上老师的教学节奏,每天的作业中都有很多不会做的题目。
对这部分的学生,你们所要做的是两个字坚持!所谓黎明前的黑暗就在此,保持好一轮复习中的那种状态。在学习上注重储备学习(所谓储备学习就是在老师上课前的内容自己先自学一遍,让自己在课堂上能够很好地跟上老师的节奏。)你们在二轮复习中要特别的注重自主超前学习,把自己不懂的地方提前发现在每天老师的讲课过程中,重视对题目的总结和归纳,不能就题论题,尽量做到做一题通类似。课后对于你来说相当重要,你要花大量时间在研究老师上课所讲的例题上,仔细揣摩老师所讲的数学思想、数学方法、解题技巧等等。另外,遇到自己不能搞清楚的问题一定要及时地问老师,做到不留问题过夜,这对你来说是很重要的。
问题三:一轮复习过的知识点在二轮复习中记不得或者想不到运用,这该怎么办?
在一轮复习结束时,大部分的学生都有拿到题目居然不知道从哪下手这种感觉,产生这种现象的原因是大家在学习的时候没有注重将知识点连点成线、连线成面,知识点在你们的大脑中还是孤立的,不能够串起来,因此有时候会掉线。克服这种问题的办法其实很简单快速阅读,把书读薄。通过快速阅读的方法能够让你在短时间内记得所有的知识点(前提是你一轮复习的很塌实),然后再通过解答题来验证知识点之间的联系,大约通过30-50道解答题的研究,你就会越来越知道知识点之间的联系了。因此对你来说,快看点、慢研题是你成功的法宝。
问题四:填空题的得分率为什么总是难以提高?
从今年开始,江苏省的高考试卷中不再有选择题了,改成填空题,这就要求我们的学生要对知识点有精准的把握,不能有一点投机取巧的心理。在实际的模拟考试中,很多学生发现,填空题的得分率总是不容易提高。
其实,从高考试卷的结构来分析,今年的高考试卷的填空题以基础知识为主,中等左右的填空题占10题左右,最简单的约有2道左右,中等偏上难度的约2道左右。因此,对不同层次的学生的要求也不一样,能很好的在此区分一点出来。对于一般学生来说,填空题是你们的命运,在填空题中要保证能够拿到10道题以上,具体做法是重在基本的解题方法研究,做到会做的永不做错,中等及以下的12道题力争全部收入囊中,向保10进12努力。对于优秀的学生来说,填空题是你们得高分的重要保障,不能藐视任何一道简单的题目。你们最多只能有犯一次错的机会。总之,填空题的70分对所有人来说都是至关重要的。
问题五:一做就错该怎么解决?
出现这种情况的原因无非就是以下几种:一、审题不仔细。二、坠落陷阱。三、计算错误。四、粗心大意。在大部分情况下,我们的学生看到类似的题目就兴奋,不能够冷静下来审题,其实在二轮复习中,我们会见到很多的类似题,他们表面是相同的,但实质却不见得一样,所用的数学方法和思想说不定就是截然不同的。因此,我们的学生要做好错题整体和总结工作,力争做到相同的错只犯一次。
问题六:不讲不懂,一讲就懂是怎么回事?
出现这种情况的原因是因为见识短浅,学生在一轮复习结束后,对于真正的高考题接触的还是比较少的,真正的高考题具有综合性、关联性,大部分题目不是考一两个知识点就能解决的,通常情况下会综合运用多个知识点,而这些知识点又是学生一轮复习中复习到了,就单个知识点来讲,大部分学生都认识,但综合起来就不是那么容易被学生看穿了。因此,我们的学生在二轮复习中要注重拆题,就像拆机器一样,将综合题拆分成几部分来研究,最后再看他是如何组装的,经过反复的拆、卸,相信大家会有所体会,不讲不懂,一讲就懂的现象也会随之减少的。
以上的六个问题,是广大高三学生在数学复习中常见的几个。
出现问题不可怕,可怕的是不知道问题的存在。在复习中出现的问题越多,说明你距离成功越近。因此,希望广大的高三学子能够正视问题的客观存在,主动地去面对问题、解决问题,相信你自己的实力!
篇2:高三数学二轮复习问题
高三数学二轮复习策略:最常见的问题有哪些
高三数学二轮复习问题一
问题一:有的学生在高三数学第一轮复习中学得很辛苦,拿模拟试卷一考却不见分数,这是为什么?
在高三数学一轮复习中,复习重在基础知识的回顾,目的是让知识结构中不存在盲区。采用的复习方法是以课本为本。在高三数学一轮复习结束后,知识点在我们的意识形态中还是孤立的,没有通过知识点之间的内在关系联系在一起。另外,由于知识点多、杂,难以让我们的学生一下子记住和掌握,更不用说灵活地运用。而我们的模拟考试往往是接近于实战,重在考察学生知识点的全面性和知识点的关联性,以及基本的方法和基本技能。除此之外,有的学校还特意将一轮模拟考试的难度稍微提高一点,目的是让大家有紧迫感,因此,在高三数学一模考试中见不到分数是很正常的,分数的提高主要是在高三数学二轮复习中。
高三数学二轮复习问题二
问题二:高三数学二轮复习的难度大于高三数学一轮复习,我基础不好,跟不上,该怎么办?
有很多基础差的学生在高三数学一轮复习中还勉强能跟上老师的节奏,而到了高三数学二轮复习中感觉很吃力,跟不上老师的教学节奏,每天的作业中都有很多不会做的题目。
对这部分的学生,你们所要做的是两个字坚持!所谓黎明前的黑暗就在此,保持好高三数学一轮复习中的那种状态。在学习上注重储备学习(所谓储备学习就是在老师上课前的内容自己先自学一遍,让自己在课堂上能够很好地跟上老师的节奏。)你们在二轮复习中要特别的注重自主超前学习,把自己不懂的地方提前发现在每天老师的讲课过程中,重视对题目的总结和归纳,不能就题论题,尽量做到做一题通类似。课后对于你来说相当重要,你要花大量时间在研究老师上课所讲的例题上,仔细揣摩老师所讲的数学思想、数学方法、解题技巧等等。另外,遇到自己不能搞清楚的问题一定要及时地问老师,做到不留问题过夜,这对你来说是很重要的。
高三数学二轮复习问题三
问题三:高三数学一轮复习过的知识点在高三数学二轮复习中记不得或者想不到运用,这该怎么办?
在高三数学一轮复习结束时,大部分的学生都有拿到题目居然不知道从哪下手这种感觉,产生这种现象的原因是大家在学习的时候没有注重将知识点连点成线、连线成面,知识点在你们的大脑中还是孤立的,不能够串起来,因此有时候会掉线。克服这种问题的办法其实很简单快速阅读,把书读薄。通过快速阅读的方法能够让你在短时间内记得所有的知识点(前提是你高三数学一轮复习的很塌实),然后再通过解答题来验证知识点之间的联系,大约通过30-50道解答题的研究,你就会越来越知道知识点之间的联系了。因此对你来说,快看点、慢研题是你成功的法宝。
篇3:高三数学二轮复习问题
高三数学第二轮复习,一般安排在3月下旬到4月底.第二轮复习承上启下,是知识系统化、条理化,促进灵活运用的关键时期,是促进学生素质、能力发展的关键时期,因而对讲练、检测等要求较高,故有二轮看水平之说.二轮看水平概括了第二轮复习的思路,目标和要求.具体地说,一是要看教师对《考试大纲》、《考题》理解是否深透,研究是否深入,把握是否到位,明确考什么、怎么考.二是看教师讲解、学生练习是否体现阶段性、层次性和渐进性,做到减少重复,重点突出,让大部分学生学有新意,学有收获,学有发展.三是看知识讲解、练习检测等内容科学性、针对性是否强,使模糊的清晰起来,缺漏的填补起来,杂乱的条理起来,孤立的联系起来,让学生形成系统化、条理化的知识框架.四是看练习检测与高考是否对路,不拔高,不降低,难度适宜,效度良好,重在基础的灵活运用和掌握分析解决问题的思维方法.怎样上好第二轮复习课?本文谈几点建议.
一.明确主体,突出重点
第二轮复习,教师必须明确重点,对高考考什么,怎样考,应了若指掌.只有这样,才能讲深讲透,讲练到位.以下列举各章节的重点,供参考.
1.函数与不等式(主体).代数以函数为主干,不等式与函数的结合是热点.
(1)关于函数性质.单调性、奇偶性、周期性(常以三角函数为载体)、对称性及反函数等处处可考.常以具体函数,结合图象的几何直观展开,有时作适当抽象.
(2)关于一元二次函数,是重中之重.有关性质及应用的训练要深入、广泛.函数值域(最值),以二次函数或转化为二次函数的值域,特别是含参变量的二次函数值域研究为重点;方法以突出配方、换元和基本不等式法为重点.一元二次方程根的分布与讨论,一元二次不等式解的讨论,二次曲线交点问题,都与一元二次函数息息相关,在训练中应占较大比重.
(3)关于不等式证明.与函数联系的不等式证明,与数列联系结合是重点.方法要突出比较法和利用基本不等式的公式法.对于放缩法虽不是高考重点,但历年考题中都或多或少用到放缩法,故掌握几种简单地放缩技巧是必要的.
(4)关于解不等式.以熟练掌握一元二次不等式及可化为一元二次不等式的综合题型为目标,突出灵活转化,突出分类讨论.
2.数列(主体).以等差、等比两种基本数列为载体考查数列的通项、求和、极限等为重点.关于抽象数列(用递推关系给出的),讲练界限要分明,只限定可化为等差、等比之类.
3.三角训练中要抓基本公式的熟练运用,突出正用、逆用和变式用.近几年呈降温趋势.训练题型、方法、难度等达到教材水准即可.
4.立体几何(主体).突出空间、立体.即把线段、线面、面面的位置关系考查置于某几何体的情景中.几何体以棱柱、棱锥为重点.棱柱中又以三棱柱、正方体为重点;棱锥以一条侧棱或一个侧面垂直于底面为重点,棱柱和棱锥的结合体也要重视.位置关系以判断或证明垂直为重点,突出三垂线定理及逆定理的灵活运用.空间角以二面角为重点,强化三垂线定理定角法.空间距以点面距、线面距为重点,二者结合尤为重要.等积转化、等距转化是最常用方法.面积、体积计算,解答题涉及棱锥(特别是三棱锥)居多.因为三棱锥体积求法灵活,思路宽广.
5.解析几何(主体).以基本性质、基本运算为目标.客观题照顾面,解答题应综合,突出直线和圆锥曲线的交点、弦长、轨迹等,突出与函数的联系.
二.研究高考,科学安排
近几年,高考数学试题稳中有变,变中求新.其特点是:稳以基础为主体,变以选拔为导向,能力寓灵活之中.鉴于此,复习安排要做到:二个加强三个突出.
1.客观题要加强速度和正确率的强化训练.高考采取了客观题(选择与填空)减少运算量、降低难度,让学生有更多的时间完成解答题,充分发挥选拔功能的做法.这就需要第二轮复习要在速度,准确率上下功夫.定时定量训练每周至少1次,总量不得少于8次,达到大部分学生一节课完成,优秀生用30~35分钟完成,失分不多于2个题目分的目标.题目设计,数形结合(4~5个),组合选(2~3个),估算或特值法(2~3个).
2.加强代数与几何的有机联系.考题,在解法代数化的基础上,鲜明特点是代数与几何联系考查明显加强了.如(22)等.复习中代数、几何各自为战的现象必须根治.
3.突出基础知识的灵活运用.基础知识的灵活运用就是能力.高考试题总体分析来看,基础性强了,但能力要求不低,其加强能力考查的途径之一就是提高知识的灵活运用.让题海战术、死记硬背、硬套模式的下去,让重视分析、注重选法、思维灵活、学习潜力大的上来.
4.突出三多--发展训练.一题多问,层层递进是高考命题的又一特点.复习中,要多练多问题,多练由大到小的分解训练,多做结论发散训练;发展一问为多问,一证为多证多算等.
5.突出学生阅读分析能力训练.试题叙述较长,部分学生就摸不着头脑,抓不住关键,从而束手无策.这在应用题中较为普遍,其原因就是阅读分析能力低.解决的途径是,让学生自己读题、审题、作图、识图,强化用数学思想和方法在解题中的指导性,强化变式,引导学生认识差之毫厘,谬之千里.另外,有意识,有目的地选择一些阅读材料,如与生产生活密切相关的应用题,利用所给信息解题等.
三、做到四个转变四个突出
1.变介绍方法为选择方法,突出解法的发现和运用.学生头脑中已储存了许多解题方法和规律,如何提取运用是第二轮解决的关键.给出方法解题目不可取,必须给出习题选方法.选法是思维活动,只有在如何选上作文章,才能解决好学生自做不会,教师一讲就通的现象,才能将所学知识转化为解决问题的能力.
2.变全面覆盖为重点讲练,突出高考热点问题.第二轮复习仅有两个半月时间,面面俱到从头来过一遍是根本办不到的.要紧紧围绕重点方法(通性通法),重要知识点,重要数学思想和方法及近几年热点题型,狠抓过关.
3.变以量为主为以质取胜,突出讲练落实.一切讲练,都要围绕学生展开,贪多嚼不烂,学生消化不了,落实不到学生身上,讲练再多也无用.只有重质减量,才能抓好落实.减少练习量,不是指不做或少做,而是在精选上下功夫,做到非重点的少讲少做甚至不讲不做.
4.变以补弱为主为扬长补弱并举,突出因材施教.高考标准分转换的特点是,原始分中的含金量与偏离(正向或负向)平均分的程度成正比.况且,影响学习成绩的因素固然很多,但学习的兴趣和爱好与成绩的强弱是相辅相成的.所以一味强调补弱是不科学的.要因人而异,因成绩而异.一般,成绩居中上游的学生,应以扬长为主,居下游的学生,应以补弱为主.处理好扬长与补弱的关系,是大面积上线的重要举措.
四、处理好五个方面
努力提高课堂复习效益,以下五个方面是必须处理好的.一是课堂容量问题.提倡增大课堂复习容量.不是追求过多的讲,过多的练,面面俱到,一网打着满河鱼,而是重点问题舍得时间,非重点问题敢于取舍,集中精力解决学生困惑的问题,增大思维容量,减少废话,减少不必要的环节,少做无用功.二是讲练比例问题.第二轮复习容易形成满堂灌或大撒手,这样都不利于学生学懂会用.每堂课都要精讲精练,分配好讲练时间,一般以30分钟为宜.三是发挥学生主体地位问题.课堂中,有的讲得多,讲得快,学生被动听、机械记,久而久之,学生思维僵化,应变能力差;有的简单提问,过多的板演、笔算,貌似气氛活跃,讲练结合,其实是教师的惰性行为.双边活动的真谛是让学生参与解题活动,参与教学过程,启迪思维,点拔要害.四是讲评的方式方法问题.学情抓不准,讲评随意,对答案式的讲评是影响讲评课效益的大敌.必须做到评前认真阅卷,评中归类、纠错、变式、辩论等方式的结合,要抓错误点,失分点,模糊点,剖析根源,彻底矫正.还可采取自教自的办法,让学生讲好解法,讲错误处,展开争论.这种方式,由于是从学生中来到学生中去,极易让学生接受.五是信息反馈问题.系统论的反馈原理指出,任何系统只有通过反馈信息,才能实现控制.提高课堂复习效益,加强信息反馈是必不可少的.两条反馈渠道非抓不可.一条是通过练习或检测搜集信息.近几年,我市采用的穿插复习法对信息搜集很有帮助.即在大专题复习过程中,每周穿插一次以选择题为主的定时定量训练,内容以检测刚学过知识为重点,兼顾后继复习内容.这样,既做到了掌握所学知识的巩固程度,又抓住了后继复习的要害,复习便有了针对性.另一条是每两周开好一次学生座谈会,有针对性地选取上、中、下三类学生进行交谈和问卷调查,每位教师先行诊断,再集体研讨分析学生的要求和看法,拿出行之有效的措施.
五、克服六种偏向
1.克服难题过多,起点过高.复习集中几个难点,讲练耗时过多,不但基础没夯实,而且能力也上不去.
2.克服速度过快.内容多,时间短,未做先讲或讲而不做,一知半解,题目虽练习,却仍不会做.
3.克服只练不讲.教师不选范例,不指导,忙于选题刻印.
4.克服照抄照搬.对外来资料、试题,不加选择,整套搬用,题目重复,针对性不强.
5.克服集体会议不力.备课组不调查学情,不研究学生,对某些影响教与学的现象抓不住或抓不准,教师头头是道,夸夸其谈,学生心烦意乱.不研究高考,复习方向出现了偏差.
6.克服高原现象.第二轮复习大考、小考不断,次数过多,难度偏大,成绩不理想;形成了心理障碍;或量大题不难,学生忙于应付,被动做题,兴趣下降,思维呆滞.
以上是我校复习一些思路,难免有不到之处,谨请各位同仁批评指正。
篇4:高三数学二轮复习问题
高三数学二轮怎么复习 衡水学霸血泪分享
一般高三数学二轮复习都是承上启下的,那么高三数学二轮应该怎么复习呢?下面,小编就详细为大家介绍下。
高三数学二轮怎么复习
高三数学第二轮复习,教师必须明确重点,对高考“考什么”,“怎样考”,应了若指掌.只有这样,才能讲深讲透,讲练到位.以下列举各章节的重点,供参考.
函数与不等式(主体).代数以函数为主干,不等式与函数的结合是“热点”.
(1)关于函数性质.单调性、奇偶性、周期性(常以三角函数为载体)、对称性及反函数等处处可考.常以具体函数,结合图象的几何直观展开,有时作适当抽象.
(2)关于一元二次函数,是重中之重.有关性质及应用的训练要深入、广泛.函数值域(最值),以二次函数或转化为二次函数的值域,特别是含参变量的二次函数值域研究为重点;方法以突出配方、换元和基本不等式法为重点.一元二次方程根的分布与讨论,一元二次不等式解的讨论,二次曲线交点问题,都与一元二次函数息息相关,在训练中应占较大比重.
(3)关于不等式证明.与函数联系的不等式证明,与数列联系结合是重点.方法要突出比较法和利用基本不等式的公式法.对于放缩法虽不是高考重点,但历年考题中都或多或少用到放缩法,故掌握几种简单地放缩技巧是必要的.
(4)关于解不等式.以熟练掌握一元二次不等式及可化为一元二次不等式的综合题型为目标,突出灵活转化,突出分类讨论.
近几年,高考数学试题稳中有变,变中求新.其特点是:稳以基础为主体,变以选拔为导向,能力寓“灵活”之中.鉴于此,高三数学二轮复习安排要做到:“二个加强三个突出”.
客观题要加强速度和正确率的强化训练.高考采取了客观题(选择与填空)减少运算量、降低难度,高三数学二轮复习让学生有更多的时间完成解答题,充分发挥选拔功能的做法.这就需要高三数学第二轮复习要在速度,准确率上下功夫.定时定量训练每周至少1次,总量不得少于8次,达到大部分学生一节课完成,“优秀生”用30~35分钟完成,失分不多于2个题目分的目标.题目设计,数形结合(4~5个),组合选(2~3个),“估算”或特值法(2~3个).
高三数学二轮复习注意事项
高三数学二轮复习一是进行横向对比研究,对几年来不同试卷中相同知识领域的试题,要善于做对比分析,找差别,找共性、找联系、找特别。
高三数学二轮复习二是进行纵向对比研究。对近三年的高考数学试题,也要按照知识领域做好分类,并进行对比研究,还要把同一省份的试卷放在一起做对比分析,找趋势、找方向、找规律,据此可排查出高考的重点、难点、热点、冷点。这样复习的目标才会清晰,思路才会开阔,针对性才会强。
“题海战术”是一个最大的误区,要避免这一误区的举措就是“反思”,解题后反思:深化对问题的理解,探究解题规律,进一步进行思维发散和内敛,形成解题思维模式,达到做一题,明一理,迁移一片,解决一类的目的;考试后反思:对错题做深入分析,找出错因,对症强化;阶段性反思:对出现的问题做阶段性总结,看哪些“病症”。
篇5:高三数学二轮复习问题
目前考生正处于高考的第二轮复习当中,要注意培养和提高数学能力,同时避免题海战术。
老师要在精讲多练中培养考生的独立探索能力。精讲是讲重点、讲难点、讲疑点、讲考点,但要注意度,对于用已有知识能解决的内容和问题,一定要安排考生独立探索,切忌包办代替。此外,还要精练,练典型题、练热点题、练多错题,通过练习促进考生知识的深化、活化、内化,从而提高解题能力和速度。
同时提醒要注意研究考题,可以从两个侧面展开。
一是进行横向对比研究,对几年来不同试卷中相同知识领域的试题,要善于做对比分析,找差别,找共性、找联系、找特别。
二是进行纵向对比研究。对近三年的高考数学试题,也要按照知识领域做好分类,并进行对比研究,还要把同一省份的试卷放在一起做对比分析,找趋势、找方向、找规律,据此可排查出高考的重点、难点、热点、冷点。这样复习的目标才会清晰,思路才会开阔,针对性才会强。
题海战术是一个最大的误区,要避免这一误区的举措就是反思,解题后反思:深化对问题的理解,探究解题规律,进一步进行思维发散和内敛,形成解题思维模式,达到做一题,明一理,迁移一片,解决一类的目的;考试后反思:对错题做深入分析,找出错因,对症强化;阶段性反思:对出现的问题做阶段性总结,看哪些病症。
篇6:高三数学二轮复习问题
33个最易失分知识点汇总
1.遗忘空集致误
由于空集是任何非空集合的真子集,因此B=?时也满足B?A。解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
2.忽视集合元素的三性致误
集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
3.混淆命题的否定与否命题
命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
4.充分条件、必要条件颠倒致误
对于两个条件A,B,如果A?B成立,则A是B的充分条件,B是A的必要条件;如果B?A成立,则A是B的必要条件,B是A的充分条件;如果A?B,则A,B互为充分必要条件。
解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断。
5.“或”“且”“非”理解不准致误
命题p∨q真?p真或q真,命题p∨q假?p假且q假(概括为一真即真);命题p∧q真?p真且q真,命题p∧q假?p假或q假(概括为一假即假);綈p真?p假,綈p假?p真(概括为一真一假)。求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解。
6.函数的单调区间理解不准致误
在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。
对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
7.判断函数奇偶性忽略定义域致误
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。
8.函数零点定理使用不当致误
如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。
9.三角函数的单调性判断致误
对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;
但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。对于带有绝对值的三角函数应该根据图像,从直观上进行判断。
10.忽视零向量致误
零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。
11.向量夹角范围不清致误
解题时要全面考虑问题。数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况。
12.an与Sn关系不清致误
在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2。这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。
13.对数列的定义、性质理解错误
等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差数列。
14.数列中的最值错误
数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题。数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一。
在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定。
15.错位相减求和项处理不当致误
错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理。
16.不等式性质应用不当致误
在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条件,如果忽视了不等式性质成立的前提条件就会出现错误。
17.忽视基本不等式应用条件致误
利用基本不等式a+b≥2ab以及变式ab≤a+b22等求函数的最值时,务必注意a,b为正数(或a,b非负),ab或a+b其中之一应是定值,特别要注意等号成立的条件。对形如y=ax+bx(a,b>0)的函数,在应用基本不等式求函数最值时,一定要注意ax,bx的符号,必要时要进行分类讨论,另外要注意自变量x的取值范围,在此范围内等号能否取到。
18.不等式恒成立问题致误
解决不等式恒成立问题的常规求法是:借助相应函数的单调性求解,其中的主要方法有数形结合法、变量分离法、主元法。通过最值产生结论。应注意恒成立与存在性问题的区别,如对任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立问题,但对存在x∈[a,b],使f(x)≤g(x)成立,则为存在性问题,即f(x)min≤g(x)max,应特别注意两函数中的最大值与最小值的关系。
19.忽视三视图中的实、虚线致误
三视图是根据正投影原理进行绘制,严格按照“长对正,高平齐,宽相等”的规则去画,若相邻两物体的表面相交,表面的交线是它们的原分界线,且分界线和可视轮廓线都用实线画出,不可见的轮廓线用虚线画出,这一点很容易疏忽。
20.面积体积计算转化不灵活致误
面积、体积的计算既需要学生有扎实的基础知识,又要用到一些重要的思想方法,是高考考查的重要题型.因此要熟练掌握以下几种常用的思想方法。(1)还台为锥的思想:这是处理台体时常用的思想方法。(2)割补法:求不规则图形面积或几何体体积时常用。(3)等积变换法:充分利用三棱锥的任意一个面都可作为底面的特点,灵活求解三棱锥的体积。(4)截面法:尤其是关于旋转体及与旋转体有关的组合问题,常画出轴截面进行分析求解。
21.随意推广平面几何中结论致误
平面几何中有些概念和性质,推广到空间中不一定成立.例如“过直线外一点只能作一条直线与已知直线垂直”“垂直于同一条直线的两条直线平行”等性质在空间中就不成立。
22.对折叠与展开问题认识不清致误
折叠与展开是立体几何中的常用思想方法,此类问题注意折叠或展开过程中平面图形与空间图形中的变量与不变量,不仅要注意哪些变了,哪些没变,还要注意位置关系的变化。
23.点、线、面位置关系不清致误
关于空间点、线、面位置关系的组合判断类试题是高考全面考查考生对空间位置关系的判定和性质掌握程度的理想题型,历来受到命题者的青睐,解决这类问题的基本思路有两个:
一是逐个寻找反例作出否定的判断或逐个进行逻辑证明作出肯定的判断;二是结合长方体模型或实际空间位置(如课桌、教室)作出判断,但要注意定理应用准确、考虑问题全面细致。
24.忽视斜率不存在致误
在解决两直线平行的相关问题时,若利用l1∥l2?k1=k2来求解,则要注意其前提条件是两直线不重合且斜率存在。如果忽略k1,k2不存在的情况,就会导致错解。这类问题也可以利用如下的结论求解,即直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0平行的必要条件是A1B2-A2B1=0,在求出具体数值后代入检验,看看两条直线是不是重合从而确定问题的答案。
对于解决两直线垂直的相关问题时也有类似的情况。利用l1⊥l2?k1·k2=-1时,要注意其前提条件是k1与k2必须同时存在。利用直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0,就可以避免讨论。
25.忽视零截距致误
解决有关直线的截距问题时应注意两点:一是求解时一定不要忽略截距为零这种特殊情况;二是要明确截距为零的直线不能写成截距式。因此解决这类问题时要进行分类讨论,不要漏掉截距为零时的情况。
26.忽视圆锥曲线定义中条件致误
利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件。如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a<|F1F2|。如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支。
27.误判直线与圆锥曲线位置关系
过定点的直线与双曲线的位置关系问题,基本的解决思路有两个:一是利用一元二次方程的判别式来确定,但一定要注意,利用判别式的前提是二次项系数不为零,当二次项系数为零时,直线与双曲线的渐近线平行(或重合),也就是直线与双曲线最多只有一个交点;二是利用数形结合的思想,画出图形,根据图形判断直线和双曲线各种位置关系。在直线与圆锥曲线的位置关系中,抛物线和双曲线都有特殊情况,在解题时要注意,不要忘记其特殊性。
28.两个计数原理不清致误
分步加法计数原理与分类乘法计数原理是解决排列组合问题最基本的原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提,在解题时,要分析计数对象的本质特征与形成过程,按照事件的结果来分类,按照事件的发生过程来分步,然后应用两个基本原理解决。
对于较复杂的问题既要用到分类加法计数原理,又要用到分步乘法计数原理,一般是先分类,每一类中再分步,注意分类、分步时要不重复、不遗漏,对于“至少、至多”型问题除了可以用分类方法处理外,还可以用间接法处理。
29.排列、组合不分致误
为了简化问题和表达方便,解题时应将具有实际意义的排列组合问题符号化、数学化,建立适当的模型,再应用相关知识解决.建立模型的关键是判断所求问题是排列问题还是组合问题,其依据主要是看元素的组成有没有顺序性,有顺序性的是排列问题,无顺序性的是组合问题。
30.混淆项系数与二项式系数致误
在二项式(a+b)n的展开式中,其通项Tr+1=Crnan-rbr是指展开式的第r+1项,因此展开式中第1,2,3,...,n项的二项式系数分别是C0n,C1n,C2n,...,Cn-1n,而不是C1n,C2n,C3n,...,Cnn。而项的系数是二项式系数与其他数字因数的积。
31.循环结束判断不准致误
控制循环结构的是计数变量和累加变量的变化规律以及循环结束的条件。在解答这类题目时首先要弄清楚这两个变量的变化规律,其次要看清楚循环结束的条件,这个条件由输出要求所决定,看清楚是满足条件时结束还是不满足条件时结束。
32、条件结构对条件判断不准致误
条件结构的程序框图中对判断条件的分类是逐级进行的,其中没有遗漏也没有重复,在解题时对判断条件要仔细辨别,看清楚条件和函数的对应关系,对条件中的数值不要漏掉也不要重复了端点值。
33.复数的概念不清致
对于复数a+bi(a,b∈R),a叫做实部,b叫做虚部;当且仅当b=0时,复数a+bi(a,b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数。解决复数概念类试题要仔细区分以上概念差别,防止出错。另外,i2=-1是实现实数与虚数互化的桥梁,要适时进行转化,解题时极易丢掉“-”而出错。
66个易混易错点汇总
一、集合与函数
1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。
2.在应用条件时,易忽略是空集的情况
3.你会用补集的思想解决有关问题吗?
4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
5.你知道“否命题”与“命题的否定形式”的区别。
6.求解与函数有关的问题易忽略定义域优先的原则。
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法。
11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)。这几种基本应用你掌握了吗?
14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论
15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
二、不等式
18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”。
19.绝对值不等式的解法及其几何意义是什么?
20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”。
22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。
23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”。
三、数列
24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
25.在“已知,求”的问题中,你在利用公式时注意到了吗?需要验证,有些题目通项是分段函数。
26.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
27.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
四、三角函数
28.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
29.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?
30.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
31.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角。异角化同角,异名化同名,高次化低次)
32.你还记得某些特殊角的三角函数值吗?
33.掌握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?
34.函数的图象的平移,方程的平移易混:
(1)函数的图象的平移为“左+右-,上+下-”。
(2)方程表示的图形的平移为“左+右-,上-下+”。
35.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)
36.正弦定理时易忘比值还等于2R。
五、平面向量
37.数0有区别,0的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。
38.数量积与两个实数乘积的区别:
在实数中:若a≠0,且ab=0,则b=0,但在向量的数量积中,若a≠0,且a?b=0,不能推出b=0。
39.a?b<0是向量和向量夹角为钝角的必要而不充分条件。
六、解析几何
40.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?
41.直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。
42.解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达。(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列平行线,找到并求出最优解⑦应用题一定要有答。)
43.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?
44.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?
45.通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)
46.在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行)。
47.解析几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?
七、立体几何
48.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。
49.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?
50.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见。
51.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大。
52.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。
53.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
54.两条异面直线所成的角的范围:0°≤α≤90°
直线与平面所成的角的范围:0°≤α≤90°
二面角的平面角的取值范围:0°≤α≤180°
55.平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。
56.棱柱及其性质、平行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)
57.球及其性质;经纬度定义易混。经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式。这些知识你掌握了吗?
八、排列、组合和概率
58.解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。
解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法。
59.二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。二项式系数最大项与展开式中系数最大项易混。二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r。
60.你掌握了三种常见的概率公式吗?(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互独立事件同时发生的概率公式。)
61.求分布列的解答题你能把步骤写全吗?
62.如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义。)
63.你还记得一般正态总体如何化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)
九、导数及其应用
64.在点处可导的定义你还记得吗?它的几何意义和物理意义分别是什么?利用导数可解决哪些问题?具体步骤还记得吗?
65.你会用“在其定义域内可导,且不恒为零,则在某区间上单调递增(减)对恒成立。”解决有关函数的单调性问题吗?
66.你知道“函数在点处可导”是“函数在点处连续”的什么条件吗?
篇7:高三数学二轮复习问题
不少学校高三一轮复习已接近尾声,即将开启二轮复习。在二轮复习中学生要达到三个目标:
1. 对知识的重点、难点进行提炼和把握,形成自己深入理解的条理化知识框架。
2. 将基础知识运用到实战考题中去,掌握各类题型的解题方法和解题技巧,提升解题能力。
3. 掌握应试技巧,规范答题,提升应试素养。
相对于一轮复习,二轮复习时间短、任务重,学生往往难以在短短几个月内达到这样的复习效果;对于教师而言,要着重处理“讲、练、评”的关系,精准把握二轮复习的学习问题,提升复习效率。
对此,风向标数学教研组调研千所学校万名师生,针对二轮复习师生需求,推出二轮复习的产品——知心慧学数学方法宝,以解题方法为切入点,归纳重要知识点所涉及的数百种解题方法,提升学生的解题能力,强化二轮复习效果。
01、方法指导 分化难度 精准备考
进入二轮复习,学生经常面对的情况是对于很多综合题茫然不知所措,无思路,无从下手,难以找到可复制的途径能够一步步学会解题方法和熟练运用。
针对学生这一学习困境,方法宝采用的方式是分化“大题”的解题难度,通过归纳学生错题所涉及到的多种解题方法,并对该错题运用的每种方法进行方法的释义,为每种解题方法提供例题指导以及分层推送相关的方法训练题,让学生从方法角度去掌握一类题的解答,以点带面,夯实学生解题能力,提升备考效率。
方法宝产品主要以下三大亮点:
智能学情诊断:结合学生一轮复习中的能力数据、错题数据、方法技巧数据,利用AI智能技术给学生进行能力画像,结合二轮实时考试数据,智能诊断学生需要提升的薄弱方法。
篇8:高三数学二轮复习问题
面对前不久公布的北京高考考试说明以及刚刚结束的期末考试,清华紫光教育特聘数学老师、高考数学命题研究专家王燕谋老师从心理和备考两方面为广大高考考生做出指导。
北京考试说明解读,难度有下降
我们在应对高考之前,必须知道高考出题并不是为了难为学生,高考只是选拨人才的一种方式,以考知识点考方法为主。
根据北京考试院公布的考试说明,北京高考命题趋势有几个原则:考察基础知识的同时,注重考查能力,考方法;命题兼顾试题的基础性,综合性和现实性,重视题间的层次性,坚持多角度考查;对基础知识的考查,既全面又突出重点,不刻意追求知识的全面性;对能力的考查,以思维能力为核心,强调综合性、应用性,并切合考生实际;对创新意识的考查。
结合命题原则以及样题总得来说,北京市考试说明中数学部分有三大特点:
1、的北京考试说明的文字部分一字未改
2、参考样题有一定的变化,28个样题中7、8、9、20、21、24、26对位改动。
明确指出了考试说明知识点理科162个,文科164个。其中理科数学要求学生掌握的程度是:
3、考卷的难度有所下降。
期末考试后摆正心态,最多就是考不上
届高三上学期期末考试是高考第一轮复习的一次火力侦查,对学生的知识、方法、能力进行了一次全面检查。面对这一次重要考试的结果,高三学生以及学生家长都应该摆正心态,高考没有想象中的那么重要,退一万步说,最差的结果就是没考上,不是世界末日,因此家长、学生不要过分紧张。
在期末考试中考的好的同学要高兴,考不好的同学更要高兴,因为这一次考试让你发现了很多问题,发现问题是好事,给了你查漏补缺的机会。家长也要给孩子一定的鼓励,这个时候你再怎么着急也于事无补,应该给孩子鼓励与信心,让他没有包袱地参加高考。
高考数学二轮复习你该怎么办
在思考高考数学二轮复习你该怎么办之前,我们应该先弄清楚高考数学考什么?考过什么?要考什么?我学过什么?对照考试大纲中的知识点,问自己你都会了吗?特别是要求掌握的知识点,自己都学习透彻了吗?不要没有方向的瞎复习。在二轮复习中,我们参考考试大纲以及在期末考试中出现的问题要完成下面三件事情:
1、 完善知识体系,解疑,补漏:不要忙着往下赶进度,先把发现的问题赶快消灭,不能还有我觉得是这样的知识点出现。
2、 对重点问题、专题知识,如函数问题、解析集合等问题要高度重视,重点复习。在能力方面,如数形转化,分域讨论,探索性问题、创新开放性问题等方面要强化补充,这些在课堂上不会涉及太多,因此想要拔尖,还需将这方面强化。
3、 杜绝马虎,马虎的本质就是不懂,它是不会、不熟悉知识点的借口。二轮复习不同于一轮复习的普遍撒网,它重点是要把自己还不会的知识点学扎实,因此学生要把自认为马虎丢分的地方吃透。
篇9:高三数学二轮复习问题
在大家翘首以盼中纷然而至,当日历翻过旧岁,高考倒计时的钟声也开始滴答做声。马上就要开始第二轮复习了,优秀生要夯实基础,提高选拔性试题的得分率;中等生则把握基础题、突破中档能力题;薄弱生则可主抓基础题,关注能力题。现在老师就大家目前的复习情况对数学学科复习提出了以下几点建议。
以课本为中心,突破难点关注热点。近几年的高考数学试题坚持新题不难,难题不怪的命题方向。强调对通性通法的考查,并且一些高考试题能在课本中找到原型。老师建议大家尽管剩下的复习时间不多,但仍要注意回归课本,只有透彻理解课本例题,习题所涵盖的数学知识和解题方法,才能以不变应万变。在每一次考试或练习中,学生要及时查找自己哪些地方复习不到位,哪些知识点和方法技能掌握不牢固,做好错题收集与诊断,并及时回归课本,查漏补缺,修正不足之处,在纠正中提高分析问题和解决问题的能力,进行巩固练习,取得很好的效果。学生制定复习计划不宜贪多求难,面对各种各样的习题和试卷,应该选择那些适合自己水平的习题去做,并逐步提高能力,通过反思达到理清基础知识、掌握基本技能、巩固复习成果的目的。
在全面系统掌握课本知识的基础上,第二轮复习应该做到重点突出。需要强调的是猜题、押题是不可行的,但分析、琢磨、强化、变通重点却是完全必要的。考生除了要留心历年考卷变化的内容外,更要关注不变的内容,因为不变的内容才是精髓,在考试中处于核心、主干地位,应该将其列为复习的重点,强调对主干的考察是保证考试公平的基本措施和手段。同时,还应关注科研、生产、生活中与数学相关的热点问题,并能够用所学的知识进行简单的分析、归纳,这对提高活学活用知识的能力就大有裨益。